Tacke, G. & Pohl, A. (1997). Der Kunde zahlt nicht jeden Preis. Bank Magazin, 8, 32-34.

Tacke, G. (1989). Nichtlineare Preisbildung: Höhere Gewinne durch Differenzierung. Wiesbaden: Gabler.

Talaga, J.A. & Buch, J. (1998). Consumer tradeoffs among mortgage instrument variables. International Journal of Bank Marketing, 16 (6), 264-270.

Tantiwong, D. & Wilton, P.C. (1985). Understanding food store preferences among the elderly using hybrid conjoint measurement models. Journal of Retailing, 61 (4), 35-64.

Tarasewich, P. & Nair, S.K. (2001). Designer-moderated product design. IEEE Transactions on Engineering Management, 48 (2), 175-188.

Tashchian, A., Tashchian, R. & Slama, M. (1981). The impact of individual differences on the validity of conjoint analysis. In Advances in consumer research (No. 9, pp. 363-366). Provo, UT: Association for Consumer Research.

Tashchian, A., Tashchian, R. & Slama, M. (1983). The family life cycle and preferred policies for gasoline conservation: a conjoint analysis. Journal of Marriage and the Family, 45 (3), 689-697.

Tatham, R. (1991a). Discussion comments on simulating market choice in conjoint analysis. In W.D. Neal (Ed.), First Annual Advanced Research Techniques Forum, June 24-27, 1990, Beaver Creek, Colorado (p. 55). Chicago, IL: American Marketing Association.

Tatham, R. (1991b). Discussion comments on attribute level effects in conjoint results: The problem and possible solutions. In W.D. Neal (Ed.), First Annual Advanced Research Techniques Forum, June 24-27, 1990, Beaver Creek, Colorado (pp. 43-54). Chicago, IL: American Marketing Association.

Teas, R.K. & Dellva, W.L. (1985). Conjoint measurement of consumers’ preferences for multiattribute financial services. Journal of Bank Research, 16 (2), 99-112.

Teas, R.K. & Perr, A.L. (1989). A test of a decompositional method of multiattribute perceptions measurement. Journal of Consumer Research, 16, 384-391.

Teas, R.K. (1985). An analysis of the temporal stability and structural reliability of metric conjoint analysis procedures. Journal of the Academy of Marketing Science, 13, 122-142.

Teas, R.K. (1987). Magnitude scaling of the dependent variable in decompositional multiattribute preference models. Journal of the Academy of Marketing Science, 15, 64-73.

Teichert, T. (1994). Zur Validität der in Conjoint-Analysen ermittelten Nutzenwerte. Zeitschrift für betriebswirtschaftliche Forschung, 7 (8), 610-629.

Teichert, T. (1998). Schätzgenauigkeit von Conjoint-Analysen. Zeitschrift für Betriebswirtschaft, 68 (11), 1245-1266.

Teichert, T. (1999). Conjoint-Analyse. In A. Herrmann & C. Homburg (Hrsg.), Marktforschung. Methoden, Anwendungen, Praxisbeispiele (S. 473-511). Wiesbaden: Gabler.

Teichert, T. (2001). Nutzenschätzung in Conjoint-Analysen. Theoretische Fundierung und empirische Aussagekraft. Wiesbaden: Deutscher Universitäts-Verlag.

Teisl, M.F., Boyle, K.J. & Roe, B. (1996). Conjoint analysis of angler evaluations of atlantic salmon restoration on the Penobscot River, Maine. North American Journal of Fisheries Management, 16, 861-871.

Thaden, C. von (2002). Conjoint-Analyse mit vielen Merkmalen: Monte-Carlo-Untersuchung einer gebrückten Conjoint-Analyse. Frankfurt a.M.: Lang.

Tharp, M. & Marks, L. (1990). An examination of the effects of attribute order and product order biases in conjoint analysis. In Advances in consumer research (No. 17, pp. 563-570). Provo, UT: Association for Consumer Research.

Theuerkauf, I. (1989). Kundennutzenmessung mit Conjoint. Zeitschrift für Betriebswirtschaft, 59 (11), 1179-1192.

Thomas, L. (1979). Conjoint Measurement als Instrument der Absatzforschung. Marketing. Zeitschrift für Forschung und Praxis, 1, 199-211.

Thomas, L. (1983). Der Einfluß von Kindern auf die Produktpräferenzen ihrer Mütter. Berlin: Duncker-Humblot.

Thomas, U. & Dröll, C. (1989). Der Einfluß von Informationen auf die Präferenzstruktur von Verbrauchern. Marketing ZFP, 11, 239-248.

Timmermans, H. (1987). Hybrid and non-hybrid evaluation models for predicting outdoor recreation behavior: A test of predictive ability. Leisure Sciences, 9 (2), 67-76.

Timmermans, H.J.P. (1982). Consumer choice of shopping centre: An information integration approach. Regional Studies, 16, 171-182.

Timmermans, H.J.P., Borgers, A., van Dijk, J. & Oppewal, H. (1992). Residential choice behavior of dual earner households: A decompositional joint choice model. Environment and Planning A, 24, 517-533.

Timmermans, H.J.P., van der Heijden, R.E.C.M. & Westerveld, H. (1984). Decision-making between multiattribute choice alternatives: A model of spatial shopping behaviour using conjoint measurements. Environment and Planning A, 16, 377-387.

Toombs, K. & Bailey, G. (1995). How to redesign your organization to match customer needs. Planning Review (A Publication of the Planning Forum), 23 (2), 20-25.

Townend, M. & Shackley, P. (2002). Establishing and quantifying the preferences of mental health service users for day hospital care: Pilot study using conjoint analysis. Journal of Mental Health, 11 (1), 85-96.

Toy, D., Rager, R. & Guadagnolo, F. (1989). Strategic marketing for recreational facilities: A hybrid conjoint analysis approach. Journal of Leisure Research, 21 (4), 276-296.

Trögel, T. & Rothsprach, M. (1996). Die Conjoint-Analyse als dekompositionelles Verfahren zur Nutzenmessung und Präferenzanalyse. In Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaus (Bd. 32, S. 527-537).

Trommsdorff, V. & Weber, G. (1994). Innovation braucht Marktforschung - Marktforschung braucht Innovation. Thexis, 11, 56-70.

Troutman, C.M. & Shanteau, J.C. (1976). Do consumers evaluate products by adding and averaging attribute information? Journal of Consumer Research, 3, 101-106.

Tsalikis, J., Seaton, B. & Shepherd, P.L. (2001). Relativism in ethical resarch: A proposed model and mode of inquiry. Journal of Business Ethics, 32 (3), 231-246.

Tsalikis, J., Seaton, B. & Tomaras, P (2002). A new perspective on cross-cultural ethical evaluations: The use of conjoint analysis. Journal of Business Ethics, 35 (4), 281-292.

Tscheulin, D.K. & Blaimont, C. (1993). Die Abhängigkeit der Prognosegüte von Conjoint-Studien von demographischen Probanden-Charakteristika. Zeitschrift für Betriebswirtschaft, 63 (8), 839-847.

Tscheulin, D.K. & Helmig, B. (1998). The optimal design of hospital advertising by means of conjoint measurement. Journal of Advertising Research, 38 (3), 35-46.

Tscheulin, D.K. (1991). Ein empirischer Vergleich der Eignung von Conjoint-Analyse und "Analytic Hierarchy Process" (AHP) zur Neuproduktplanung. Zeitschrift für Betriebswirtschaft, 61 (11), 1267-1280.

Tscheulin, D.K. (1992). Optimale Produktgestaltung: Erfolgsprognose mit Analytic Hierarchy Process und Conjoint-Analyse. Wiesbaden: Gabler.

Tscheulin, D.K. (1996). Determinanten der Validität der Conjoint-Analyse. In A. von Ahsen & T. Czenskowsky (Hrsg.), Marketing und Marktforschung: Entwicklungen, Erweiterungen und Schnittstellen im nationalen und internationalen Kontext (S. 585-598). Hamburg: Lit.

Tucci, L.A. & Talaga, J. (1997). Service guarantees and consumers´ evaluation of services. Journal of Services Marketing, 11 (1), 10-18.

Tukey, J.W. (1949). One degree of freedom for additivity. Biometrics, 5, 232-242.

Tullous, R. & Munson, J.M. (1992). Organizational purchasing analysis for sales management. Journal of Personal Selling and Sales Management, 12 (2), 15-26.

Tumbusch, J.J. (1987). How to design a conjoint study. In Proceedings of the Sawtooth Software Conference on Perceptual Mapping, Conjoint Analysis, and Computer Interviewing (No. 1, pp. 283-287). Ketchum, ID: Sawtooth Software.

Tumbusch, J.T. (1991). Validation of adaptive conjoint analysis (ACA) versus standard concept testing. In M. Metegrano (Ed.), 1991 Sawtooth Software Conference Proceedings (pp. 177-184). Ketchum, ID: Sawtooth Software.

Tversky, A. (1967a). A general theory of polynomial conjoint measurement. Journal of Mathematical Psychology, 4, 1-20.

Tversky, A. (1967b). Utility theory and additivity analysis of risky choices. Journal of Experimental Psychology, 75, 27-36.

Tyner, M.J. & Weiner, J. (1989). Optimal pricing strategies through conjoint analysis. In Sawtooth Software (Ed.), Proceedings of the Sawtooth Software Conference: Gaining a competitive advantage through PC-based interviewing and analysis (Vol 1, pp. 45-51), Ketchum, ID: Sawtooth Software.


Ueda, T. (1994). Analysis of preferences for services based on conjoint analysis. IEICE Transactions on Communications (J77-B (9), pp. 542-549). Japan: Institute of Electronics, Information and Communication Engineers (in Japanese).

Ueda, T. (2000, July). Methods of treating data with contradiction in the conjoint analysis. Paper presented at the 5th Conference of the Association of Asian-Pacific Operations Research Societies (APORS) in Singapore.

Ulengin, B. (1998). Using hierarchical information integration to examine customer preferences in banking. International Journal of Bank Marketing, 16 (5), 202-210.

Ullrich J.R. & Wilson R.E. (1990). CPCJM: A set of programs for checking polynomial conjoint measurement and additivity axioms of 3-dimensional matrices. Applied Psychological Measurement, 14, 433-434.

Ullrich, J.R. & Cummins, D.E. (1973). PCJM: A program for conjoint measurement analysis of polynomial composition rules. Behavioral Science, 18, 226-227.

Ullrich, J.R. & Painter, J.R. (1974). A conjoint measurement analysis of human judgment. Organizational Behavior and Human Performance, 12, 50-61.

Ullrich, J.R., Cummins, D.E. & Walkenbach, J. (1978). PCJM2: A program for the axiomatic conjoint measurement analysis of polynomial composition rules. Behavior Research Methods & Instrumentation, 10, 89-90.

Ulvila, J.W. & Brown, R.V. (1991). Decision analysis comes of age. In Accurate business forecasting: A Harvard business review paperback (pp. 13-24). Boston, MA: Harvard Business School Publishing Division.

Umesh, U.N. & Mishra, S. (1990). A monte carlo investigation of conjoint analysis index-of-fit: Significance and power. Psychometrica, 55 (1), 33-44.

Umesh, U.N. (1984). Validation of a consumer preference measurement procedure. In R.W. Belk, R. Peterson, G.S. Albaum, M.B. Holbrook, R.A. Kerin, N.K. Malhotra & P. Wright (Eds.), 1984 AMA Educators’ Proceedings (No. 50, pp. 398-401). Chicago, IL: American Marketing Association.

Umesh, U.N., Krieger, A.M. & Green, P.E. (1997). Effect of level of disaggregation on conjoint cross validations: Some comparative findings. Paper presented at the 1997 INFORMS Marketing Science Conference, Berkeley, CA.

Urban, G.L. & Hauser, J.R. (1980). Chapter 10: Product positioning – preference analysis and benefit segmentation, and Chapter 11: Logit analysis – an analytic technique to estimate purchase probabilities. In Design and marketing of new products (pp. 235-316). Englewood Cliffs, NJ: Prentice-Hall.

Urlings, J. (1992a). Understanding conjoint analysis. Marketing opportunities with advanced research techniques: Proceedings of the second SKIM Seminar (pp. 1-10). Rotterdam, The Netherlands: SKIM Market and Policy Research.